NCERT Solutions For Class 10 Maths Chapter 2 Polynomials
Exercise 2.1
1. The graphs of `y = p(x)` are given in Fig. below, for some polynomials `p(x)`. Find the number of zeroes of `p(x)`, in each case.
Solutions:
`(i)` No zeroes `(ii) 1 (iii) 3 (iv) 2 (v) 4 (vi) 3`
Exercise 2.2
1. Find the zeroes of the following quadratic polynomials and verify the relationship between
the zeroes and the coefficients.
`(i) x^2
– 2x – 8 (ii) 4s^2
– 4s + 1 (iii) 6x^2
– 3 – 7x`
`(iv) 4u^2
+ 8u (v) t^2
– 15 (vi) 3x^2
– x – 4`
Solutions
`(i) x^2 – 2x – 8`
`x^2 – 2x – 8 = 0`
`⇒ x^2 -4x + 2x -8 = 0`
`⇒ x(x + 2) -4 (x + 2) = 0`
`⇒ (x + 2) (x -4) = 0`
`⇒ x = -2` or `x = 4`
`alpha + beta = -b/a`
`⇒ -2 + 4 = 2/1`
`alpha beta = c/a`
`⇒ -2 × 4 = -8/1`
verified.
Video Solution (Click here) π₯
`(ii) 4s^2 – 4s + 1`
`⇒ 4s^2 -2s -2s + 1 = 0`
`⇒ 2s(2s -1) - 1(2s -1) = 0`
`⇒ (2s -1) (2s -1) = 0`
`⇒ s = 1/2` or `s = 1/2`
`alpha + beta = -b/a`
`⇒ 1/2 + 1/2 = 2/2 = 1 = 4/4`
`alpha beta = c/a`
`⇒ 1/2 × 1/2 = 1/4`
verified.
`(iii) 6x^2 – 3 – 7x`
`6x^2 – 7x – 3 = 0`
`⇒ 6x^2 -9x + 2x -3 = 0`
`⇒ 3x(2x -3) +1 (2x -3) = 0`
`⇒ (2x -3) (3x +1) = 0`
`⇒ x = 3/2` or `x = -1/3`
`alpha + beta = -b/a`
`⇒ 3/2 + (-1/3 )= 3/2 -1/3 = frac{9-2}{6} = 7/6`
`alpha beta = c/a`
`⇒ 3/2 × (-1/3) = - 1/2 = -3/6`
verified.
Video Solutions (ii), (iii) (Click here ) π₯
`(iv) 4u^2 + 8u`
`⇒ 4u (u + 2) = 0`
`⇒ u = 0` or `u = -2`
`alpha + beta = -b/a`
`⇒ 0 + (-2) = -2 = -8/4 `
`alpha beta = c/a`
`⇒ 0 × (-2) = 0`
verified.
`(v) t^2 – 15`
`t^2 – (sqrt15)^2 = 0`
`⇒ (t + sqrt15)(t -sqrt15) = 0`
`⇒ t = sqrt15` or `t = -sqrt15`
`alpha + beta = -b/a`
`⇒ sqrt15 + (-sqrt15) = 0`
`alpha beta = c/a`
`⇒ sqrt15 × (-sqrt15) = -15/1`
verified.
Video Solutions (iv), (v) (Click here) π₯
`(vi) 3x^2 – x – 4`
`3x^2 – x – 4 = 0`
`⇒ 3x^2 -4x + 3x -4 = 0`
`⇒ x(3x -4) +1 (3x -4) = 0`
`⇒ (3x -4) (x +1) = 0`
`⇒ x = 4/3` or `x = -1`
`alpha + beta = -b/a`
`⇒ 4/3 + (-1) = 4/3 -1 = frac{4-3}{3} = 1/3`
`alpha beta = c/a`
`⇒ 4/3 × (-1) = -4/3`
verified.
Video Solution (vi) π₯
2. Find a quadratic polynomial each with the given numbers as the sum and product of its
zeroes respectively.
`(i) 1/4, -1 (ii) sqrt2, 1/3 (iii) 0, sqrt5 (iv) 1,1 (v) -1/4, 1/4 (vi) 4,1`
Solutions
`(i) 1/4, -1`
`alpha + beta = 1/4`
`alpha beta = -1`
`therefore` required quadratic polynomial is
`x^2 - (alpha + beta)x + alpha beta`
`= x^2 - 1/4x -1`
`= 4x^2 -x -4`
`(ii) sqrt2, 1/3`
`alpha + beta = sqrt2`
`alpha beta = 1/3`
`therefore` required quadratic polynomial is
`x^2 - (alpha + beta)x + alpha beta`
`= x^2 - sqrt2x + 1/3`
`= 3x^2 -3sqrt2x +1`
`(iii) 0, sqrt5`
`alpha + beta = 0`
`alpha beta = sqrt5`
`therefore` required quadratic polynomial is
`x^2 - (alpha + beta)x + alpha beta`
`= x^2 - 0x + sqrt5`
`= x^2 + sqrt5`
`(iv) 1,1`
`alpha + beta = 1`
`alpha beta = 1`
`therefore` required quadratic polynomial is
`x^2 - (alpha + beta)x + alpha beta`
`= x^2 - 1x + 1`
`= x^2 -x + 1`
`(v) -1/4, 1/4`
`alpha + beta = -1/4`
`alpha beta = 1/4`
`therefore` required quadratic polynomial is
`x^2 - (alpha + beta)x + alpha beta`
`= x^2 - (-1/4)x + 1/4`
`= x^2 +1/4x + 1/4`
`= 4x^2 +x + 1`
`(vi) 4,1`
`alpha + beta = 4`
`alpha beta = 1`
`therefore` required quadratic polynomial is
`x^2 - (alpha + beta)x + alpha beta`
`= x^2 - 4x + 1`
π¦Wonderful π¦
ReplyDeleteThank you
DeleteIts important and awesome notes...........
ReplyDeleteπ―π―π―ππππππ
Thank you
Deleteπ―ππ―ππ―ππ―ππ―ππ―π―ππ―ππ―
ReplyDeleteYou made this easy to understand. .
ReplyDeleteYou made this easy to understand. .
ReplyDelete❣️❣️ wow π π π π π₯° ☺️ π π π π π₯° ☺️ π π π π π₯° ☺️ π π π
ReplyDeleteKeep going ππππππππππππ
ReplyDeleteKeep going πππππππ
ReplyDelete