INTRODUCTION TO TRIGONOMETRY (NCERT Solutions )

 

INTRODUCTION TO TRIGONOMETRY



EXERCISE 8.1




1. In `∆ ABC`, right-angled at `B, AB = 24 cm, BC = 7 cm.` Determine :  
`(i)  sin A, cos A  (ii)  sin C, cos C` 

Solution  👉    Click here 🎥



2.  In Fig.  find `tan P – cot R`.  



Solution  👉  Click here 🎥



3.  If  `sin A = 3/4`  calculate `cos A` and `tan A`.

Solution  👉  Click here 🎥



4.  Given `15 cot A = 8`, find `sin A` and `sec A`.

Solution  👉 Click here 🎥


5.  Given `sec θ = 13/12` calculate all other trigonometric ratios.

Solution  👉 Click here 🎥


6. If `∠ A` and `∠ B` are acute angles such that `cos A = cos B`, then show that `∠ A = ∠ B`.

Solution  👉 Click here 🎥


7.  If `cot θ = 7/8`  evaluate:

(i)   `\frac{(1 + \sin \theta) (1 - \sin \theta)}{(1 + \cos \theta) (1 - \cos \theta)}` 

(ii)  `\cot^2 \theta`

Solution  👉 Click here 🎥


9.  In  `\Delta ABC`, right-angled at B, if `tan A = 1/sqrt 3`  find the value of:

(i) `\sin A \cos C + \cos A \sin C`

ii) `\cos A \cos C – \sin A \sin C` 

Solution  👉   Click here 🎥


10.  In `∆ PQR`, right-angled at `Q, PR + QR = 25 cm` and `PQ = 5 cm`. Determine the values of sin P, cos P and tan P.

Solution  👉  Click here 🎥


11. State whether the following are true or false. Justify your answer.
(i) The value of tan A is always less than 1.
(ii) `sec A = 12/5`  for some value of angle A 
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) `sin θ = 4/3`  for some angle θ.

Solution  👉  Click here 🎥



EXERCISE 8.2


1. Evaluate the following : 

(i) sin 60° cos 30° + sin 30° cos 60° 

Solution  👉   Click here 🎥


(ii)  `2 tan^2 45° + cos^2 30° – sin^2 60°`

Solution  👉   Click here 🎥


(iii) `\frac {cos 45°}{ sec 30° + cosec 30°}`

Solution  👉  Click here 🎥


(iv)  `\frac{sin 30° + tan 45° – cosec 60°}{sec 30° + cos 60° + cot 45° }`

Solution  👉   Click here 🎥


(v)  `\frac{5 cos^2 60° + 4 sec^2 30° -  tan^2 45°}{sin^2 30° + cos^2 30°}`

Solution  👉  Click here 🎥



2 (i)  `\frac{2 tan 30°}{1 + tan^2 30°}`

Solution  👉 Click here 🎥 


(ii) `\frac{1 - tan^2 45°}{1 + tan^2 45°}`

Solution  👉 Click here 🎥


(iii)  ` sin 2A = 2 sin A` is true when A =
(A) 0° (B) 30° (C) 45° (D) 60°

Solution  👉 Click here 🎥


(iv)  `\frac{2 tan 30°} {1 - tan^2 30°}`

Solution  👉  Click here 🎥

Post a Comment

Previous Post Next Post